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Abstract. We describe the excitation spectrum of a two-component neutral Fermi gas with attractive inter-
actions in the superfluid phase at finite temperature by deriving a suitable Random-Phase approximation
in the collisionless regime with the technique of functional derivatives. The obtained spectrum for the ho-
mogeneous gas at small wavevectors contains the Bogoliubov-Anderson phonon and is essentially different
from the spectrum predicted by the static Bogoliubov theory, which instead shows an unphysically large
response. We adapt the results for the homogeneous system to obtain the dynamic structure factor of a
harmonically confined superfluid and we identify in the spectrum a unique feature of the superfluid phase.

PACS. 05.30.Fk Fermion systems and electron gas – 03.75.Fi Phase coherent atomic ensembles; quantum
condensation phenomena – 74.20.Fg BCS theory and its development – 67.57.Jj Collective modes

1 Introduction

The techniques of atom trapping and cooling which have
led to the realization of Bose-Einstein condensation in al-
kali gases are currently being employed to cool also the
fermionic isotopes 40K [1] and 6Li [2]. Dilute gases of
fermionic atoms with attractive inter-particle interactions
are predicted to undergo a superfluid transition at low
temperatures (Tsup � TF, where TF is the Fermi tem-
perature). The simplest mechanism envisaged is a s-wave
pairing [3,4] which can be obtained, compatibly with the
Pauli principle, between atoms belonging to two different
internal states. The realization of a two-component Fermi
gas in the superfluid state may provide a new physical sys-
tem to study. Its properties are expected to be different
from those of superfluid 3He, which has a p-wave pair-
ing and is not in the dilute regime, and from conventional
charged superconductors which have an excitation spec-
trum dominated by the Coulomb interaction [5] and only
weakly modified by the superfluid transition.

An important issue for future experiments is to identify
a clear signature of the superfluid transition in an atomic
Fermi gas. Contrary to the case of atomic Bose-Einstein
condensates, for fermions the superfluid transition affects
only slightly the density profile and the internal energy
of the gas [6]. A first idea is to measure the pair distri-
bution function of the atoms, e.g. by using a laser probe
beam [7]. A second idea is to look at the dynamical prop-
erties, which are expected to be dramatically modified by

a e-mail: minguzzi@sns.it

the transition. Several proposals have been put forward in
this direction, such as Cooper-pair breaking via a Raman
transition [8], measurement of the moment of inertia of
the cloud [9], and excitation of collective modes in a har-
monic trap by modulation of the trap frequencies [10] or
rotation of the axis of the trap [11].

In this work we suggest to identify the superfluid phase
through the measurement of the bulk excitations of the
gas, i.e. excitations with a wavelength smaller than the
spatial extension of the atomic cloud. This is complemen-
tary to the proposals in [10,11] as it deals with high energy
excitations in a quasi-homogeneous system at arbitrary
temperature, and is not irrealistic from the experimental
point of view, since efficient Bragg scattering techniques
have already been successfully used to measure the exci-
tation spectra of Bose condensates [12].

We obtain the excitation spectrum of the fluid in the
dilute and collisionless regime by employing the Random-
Phase (or Time-Dependent Hartree-Fock-Gorkov) Ap-
proximation (RPA), which we derive explicitly for the two-
component system of present interest by the technique
of functional derivatives [13,14]. We do not use here the
usual static Bogoliubov approximation [15] for two main
reasons:

(i) physically its excitation spectrum has a gap and there-
fore ignores the branch of phonon-like excitations
(Bogoliubov-Anderson phonon, [16–18]) expected on
very general grounds to show up in homogeneous neu-
tral superconductors with short range interactions [5]
and,
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(ii) the density-density response function obtained within
this approximation shows an unphysically large re-
sponse at small wavevectors and fails to satisfy the
f -sum rule, which is a requirement deriving from the
local particle conservation law.

We find that the RPA spectrum of a homogeneous two-
component Fermi gas in the superfluid phase possesses the
continuum of particle-hole excitations and a peak corre-
sponding to the Bogoliubov-Anderson phonon; it satisfies
the f -sum rule and includes naturally the Landau damp-
ing of the phonon due to the interplay with thermal ex-
citations. We adapt the results obtained for the homoge-
neous system to describe harmonically confined gases by
means of a local-density approximation, which predicts a
broadening of the spectrum by taking into account the
inhomogeneity of the density profile. We predict that the
Bogoliubov-Anderson phonon, which is the main feature
of the spectrum in the superfluid phase, would remain vis-
ible even in the trapped cloud.

The structure of this paper is as follows. In Section 2
we derive the density response function of the fluid in the
RPA. In Section 3 we obtain the spectrum of density fluc-
tuations first in the homogeneous case and then for an
harmonically trapped gas. Finally, Section 4 gives a sum-
mary of our results and offers some concluding remarks.

2 Random-phase approximation

We describe a two-component atomic Fermi gas by the
following Hamiltonian:

Ĥ − µN̂ =
∑
α=↑,↓

∫
d3r ψ̂†α(r)

(
− ~

2

2m
∇2 + Vext,α(r)

+U(r, t)− µα) ψ̂α(r)

+
1
2

∑
{α,β}=↑,↓

∫
d3r

∫
d3r′ ψ̂†α(r)ψ̂†β(r′)

× vαβ(r− r′)ψ̂β(r′)ψ̂α(r). (1)

The fermionic field operators ψ̂α(r) satisfy the usual an-
ticommutation relations; the interactions are considered
only in s-wave between fermions in different internal states
and are modeled by the attractive inter-particle potential

vαβ(r1 − r2) =

(
0 v↑↓(r1 − r2)

v↑↓(r1 − r2) 0

)
,

with v↑↓(r1 − r2) = v↑↓δ(r1 − r2)∂r12(r12·) and v↑↓ < 0.
This model interaction potential, known as the Fermi
pseudopotential, leads to a divergence-free BCS theory
[19]. For the sake of generality we have included the pres-
ence of the external confinement via the trapping poten-
tials Vext,α(r) and the possibility of having different num-
bers of atoms in the two components; however in the fol-
lowing we shall restrict to the derivation of the equations
in the homogeneous system and in the symmetric case

N↑ = N↓ = N/2, which is the most favourable for the
formation of Cooper pairs [4]. The effect of trapping po-
tential present in a realistic experiment will be included
later on with a local density approximation. The external
perturbing field which is necessary to generate the total
density response has been introduced as U(r, t). Physi-
cally U represents the action of the probe applied in a real
experiment; it may be a time-dependent perturbation ap-
plied to the magnetic trap [20], a probe laser beam [12] or
a test particle [21]. Here we have assumed that the same
potential U acts in the same way on both components,
and we shall determine the perturbation δρ(r, t) on the
total density induced by the probe potential U(r, t), as-
suming that the gas is initially at thermal equilibrium with
a temperature T . We restrict to the linear response regime,
where the density perturbation is a linear functional of the
probe potential U expressed through the density-density
response function χ(r1, t1, r2, t2), a function of two posi-
tion vectors r1,2 and of two time variables t1,2:

δρ(r1, t1) =
∫

d3r2 dt2 χ(r1, t1, r2, t2)U(r2, t2). (2)

In this section we explain how to calculate this response
function in the Hartree-Fock-Gorkov approximation. We
obtain general equations valid for an arbitrary trapping
potential Vext(r). We then solve these equations explicitly
for a spatially homogeneous gas at thermal equilibrium,
where χ is a function of r1 − r2 and t1 − t2 only.

To proceed with the derivation of the response function
χ, we follow the imaginary time Green’s function tech-
nique of the book of Kadanoff and Baym [13]. One first
defines the two by two matrix of (normal and anomalous)
Green’s functions in imaginary times

G(1, 2) =

(
G↑↑(1, 2) G↑↓(1, 2)
G↓↑(1, 2) G↓↓(1, 2)

)
≡ −〈TΨ̂(1)Ψ̂†(2)〉 (3)

where T is the time-ordering operator,

Ψ̂(1) =

(
ψ̂↑(1)
ψ̂†↓(1)

)
,

Ψ̂†(2) =
(
ψ̂†↑(2), ψ̂↓(2)

)
,

〈...〉 indicates the average over the state of the system
in the presence of the perturbing field U and (1, 2) stands
for (r1, iτ1, r2, iτ2), where τ1 and τ2 are real quantities. For
more details on the imaginary time technique, we refer to
reference [13]. We simply note that the various functions
considered here can be obtained for real times by ana-
lytic continuation of their imaginary time values. From
the equation of motion for the field operator in imagi-
nary times one derives [13] the generalized Dyson equation
for G:

G(1, 2) = G0(1, 2)

+
∫

d3̄
∫

d4̄G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2)

+
∫

d3̄G0(1, 3̄)W (3̄)G(3̄, 2) , (4)
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where the 2×2 matrix G0(1, 2) is the solution of the equa-
tions of motion in absence of the interactions,

W (1) =

(
U(1) 0

0 −U(1)

)

is the 2×2 matrix of external field and Σ(1, 2) is the 2×2
matrix of self-energies. Since we want to describe a dilute
system, we work in the mean-field Hartree-Fock-Gorkov
symmetry breaking approximation, where the self-energy
reads

ΣHG(1, 2) = δ(1, 2)v↑↓

(
〈ψ̂†↓(1)ψ̂↓(1)〉 0

0 −〈ψ̂†↑(1)ψ̂↑(1)〉

)

+ v↑↓(1, 2)

(
0 G↑↓(1, 2)

G↓↑(1, 2) 0

)
. (5)

Here we have used the notations δ(1, 2) = δ(r1−r2)δ(τ1−
τ2)/i and v↑↓(1, 2) = v↑↓(r1, r2)δ(τ1 − τ2)/i. We remark
that the Fock contribution is zero since the interaction
takes place only between particles with opposite spins and
〈ψ†↑ψ↓〉 = 0 in the considered state of the system, hence
the vanishing diagonal in the last term of equation (5).

Following a standard approach [13,14], we then ob-
tain the density response matrix in RPA by taking the
functional derivative of the Green’s function with re-
spect to the external field U : we define the generalized
response matrix as the two by two matrix L(1, 2, 3) =
σ3δG(1, 2)/δU(3), where σ3 is the third Pauli matrix(

1 0
0 −1

)
.

The matrix giving the physical response is obtained from
the limit L(1, 2) ≡ L(1, 1+, 2). The density-density re-
sponse function χ is simply the trace over the two spin
components of the response matrix:

χ(1, 2) = TrL(1, 2) = L↑↑(1, 2) + L↓↓(1, 2). (6)

The equation for the density response in the Random-
Phase Approximation is obtained by the functional deriva-
tive of the Dyson equation, equation (4), where the ap-
proximation (5) for the self energy has been employed.
This yields:

L(1, 2) = L0(1, 2) +
v↑↓
2

∫
d3̄L0(1, 3̄)χ(3̄, 2)

−
∫

d3̄
∫

d4̄ G̃(1, 3̄)M(3̄, 4̄, 2)G̃(4̄, 1)v↑↓(3̄, 4̄).

(7)

Here we have introduced the 2 × 2 matrices G̃(1, 2) =
σ3G(1, 2), L0(1, 2) = G̃(1, 2)G̃(2, 1), and

M(1, 2, 3) =

(
0 L↑↓(1, 2, 3)

L↓↑(1, 2, 3) 0

)
.

Physically L0(1, 2) is the response matrix of the gas in
the static Bogoliubov approximation, so that the reference
system of the RPA is not the ideal gas but the Bogoliubov
gas of quasiparticles.

It is possible to display the diagrammatic structure of
equation (7) by separating out the “proper” part L̄(1, 2)
of the density response. We have therefore an equation
which sums the bubble diagrams,

L(1, 2) = L̄(1, 2) +
1
2
v↑↓

∫
d3̄ L̄(1, 3̄)χ(3̄, 2) , (8)

and an equation which defines the bubble as a sum of all
the ladder diagrams,

L̄(1, 2) = L0(1, 2)

−
∫

d3̄
∫

d4̄ G̃(1, 3̄)v↑↓(3̄, 4̄)M̄(3̄, 4̄, 2)G̃(4̄, 1).

(9)

Here

M̄ =

(
0 L̄↑↓
L̄↓↑ 0

)
.

We now specialize the previous equations to the case of a
spatially homogeneous gas and to the dilute limit ∆� εF,
where ∆ is the gap and εF is the Fermi energy. All the re-
sponse matrices depend then only on the relative spatial
coordinates r = r1 − r2 and the relative time coordinate
t = t1 − t2 and we introduce their double Fourier trans-
forms with respect to r and t, e.g.

L̄(q, ω) =
∫

d3r dt L̄(r1 = r, t1 = t, r2 = 0, t2 = 0)

× ei(q·r−ωt). (10)

The following equation is obtained for L̄(q, ω) from the
solution of equation (9) together with the regularization
of the contact potential:

L̄(q, ω) = A(q, ω) + v↑↓
4[C(q, ω)]2

1 + v↑↓Breg(q, ω)
, (11)

where A(q, ω), Breg(q, ω) and C(q, ω) are complex func-
tions of the frequency to be evaluated numerically. We
remark that the assumption∆� εF has considerably sim-
plified the treatment by allowing to introduce only three
basic functions (A, B and C) in place of six required by
the exact treatment [14]. The general expression R(q, ω),
where R stands for A, B or C and r stands for a, b, c, is
given by [14]

R(q, ω) =
∫

d3k

(2π)3
rL(k,q)(f(E+)− f(E−))

×
[

1
~ω +E+ −E− + iη

− α 1
~ω − (E+ −E−) + iη

]
+ rB(k,q)(1 − f(E+)− f(E−))

×
[

1
~ω − (E+ +E−) + iη

− α 1
~ω +E+ +E− + iη

]
(12)
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where the “Landau” contributions rL(k,q) are given by

aL(k,q) = (1 + (ξ+ξ− −∆2)/E+E−)/4 (13)

bL(k,q) = (1− (ξ+ξ− +∆2)/E+E−)/4 (14)
cL(k,q) = ∆(1/E+ − 1/E−)/8 (15)

and where the “Beliaev” contributions rB(k,q) are
given by

aB(k,q) = (1− (ξ+ξ− −∆2)/E+E−)/4 (16)

bB(k,q) = (1 + (ξ+ξ− +∆2)/E+E−)/4 (17)
cB(k,q) = −∆(1/E+ + 1/E−)/8 (18)

for A(q, ω), B(q, ω) and C(q, ω) respectively. The func-
tion B(q, ω) as defined in equation (12) presents an ul-
traviolet divergence originating from the choice of a con-
tact interaction potential. This divergence is removed in a
systematic way by the use of the pseudopotential, which
amounts here simply to subtracting the most diverging
contribution in the form 1/(2ξk):

Breg(q, ω) = B(q, ω)−
∫

d3k

(2π)3
P
(

1
2ξk

)
(19)

where P represents the principal value [22]. We have used
the notations ξ± = ~2(k± q/2)2/2m+ v↑↓n/2− µ where
n is the total equilibrium density of particles, E± =
(ξ2
± + ∆2)1/2 and f(E) = 1/(exp(βE) + 1) is the Fermi

distribution function at temperature T with β = 1/(kBT ).
The parameter α equals 1 for A(q, ω) and B(q, ω), while
α equals −1 for C(q, ω), and η is a positive infinitesimal.

The final expression for the double Fourier transform
of the density-density response function in RPA is ob-
tained from equation (8) as:

χ(q, ω) =
2L̄(q, ω)

1− v↑↓L̄(q, ω)
· (20)

This can be contrasted with the density-density response
function in the static Bogoliubov approximation, which
leads to χ(q, ω) = 2A(q, ω) [23].

3 The spectrum of density fluctuations

3.1 Homogeneous system

Before displaying the fully numerical solution of equa-
tions (11, 20), we analyze some limiting cases. At tem-
peratures higher than the BCS transition temperature we
have B(q, ω) = 0, C(q, ω) = 0 and A(q, ω) = χ0(q, ω),
where χ0(q, ω) is the well-known Lindhard function for
the response of a ideal Fermi gas (see for example [25]).
The RPA equation (11) reduces to the usual expression
χ = 2χ0/(1 − v↑↓χ0), the factor two being due to the
two spin components of the gas. In the case of repulsive
interactions (i.e. v↑↓ > 0) the equation shows a pole cor-
responding to the zero sound, while no well-defined col-
lective excitation is stable in the case of attractive inter-
actions considered in this paper.

At zero temperature, in the limit of small q and ω it
is possible to estimate analytically the expression for the
density response function; to lowest order in q we obtain

χ(q, ω) =
c2Bq

2N (εF)
(ω + iη)2 − c2Bq2(1 + 2kFa↑↓/π)

, (21)

where cB = vF/
√

3 is the sound velocity predicted by Bo-
goliubov, N (εF) = mkF/π

2~2 is the density of states at
the Fermi level and a↑↓ is the scattering length such that
v↑↓ = 4π~2a↑↓/m. The pole yields a phonon-like excita-
tion, corresponding to the Bogoliubov-Anderson sound for
this system. Equation (21) holds approximately until the
phonon is stable, that is before it meets the continuum of
quasiparticle-quasihole excitations, which has a threshold
energy of 2∆. Evidently the RPA expression is valid in the
dilute limit kF|a↑↓| � 1.

It is easily checked that in the long-wavelength limit
the Bogoliubov-Anderson sound exhausts the f -sum rule
−
∫

dω ωImχ(q, ω) = πnq2/m, where n is the total density
of the gas. A more general proof can be obtained by notic-
ing that the RPA, being equivalent to the time-dependent
Hartree-Fock-Bogoliubov theory, automatically satisfies
the continuity equation and hence the f -sum rule. On the
contrary, the static Bogoliubov approximation results to
be bad in the limit q → 0: from equation (12) we esti-
mate that A(q → 0, ω) ∝ ω−3/2 in the high frequency
limit, yielding an infinite contribution to the first moment
integral [24].

We now turn to the presentation of numerical results.
Rather than plotting the complex quantity χ(q, ω) we
have chosen to represent the spectrum of total density
fluctuations of wavevector q, given by the dynamic struc-
ture factor S(q, ω). On an experimental point of view the
dynamic structure factor can be accessed via the rate of
the scattering events of a probe particle by the gas leading
to a momentum exchange ~q and to an energy exchange
~ω between the probe particle and the gas; on a theo-
retical point of view the dynamic structure factor of the
gas is related to Imχ(q, ω) by the fluctuation-dissipation
theorem [25]:

S(q, ω) = −(2~/n)(1− exp(−β~ω))−1Imχ(q, ω). (22)

Figure 1 shows the spectrum of a homogeneous superfluid
at zero temperature as resulting from the full RPA calcula-
tion, compared to the predictions of the static Bogoliubov
approximation: it is evident that for small q (~q < 2∆/cB)
the Bogoliubov approximation yields an unphysically large
response (Fig. 1a). For larger q the Bogoliubov-Anderson
phonon falls in the continuum of quasi-particle quasi-hole
excitations, and the two approximations yield almost the
same result (Fig. 1b), which is also close to the ideal-gas
solution.

3.2 Harmonically trapped system

We turn now to the situation where the particles are sub-
ject to an external harmonic confinement. We assume that
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Fig. 1. Dynamic structure factor of a homogeneous superfluid
Fermi gas at T = 0 for q = 0.054kF (a), and for q = 0.54kF

(b), as predicted by the RPA (solid line) and by the static
Bogoliubov approximation (dashed line). The results for a non-
interacting Fermi gas (long-dashed line) are also shown. kF is
the Fermi wavevector and εF = ~

2k2
F/2m is the Fermi energy

of the non-interacting Fermi gas at the same density. The pa-
rameters chosen are ∆ = 0.065εF and kFa↑↓ = −0.04.

the confining potential has the same action on both spin
components, this is indeed the case in a laser induced trap.
For simplicity we further assume that the resulting trap-
ping potential is isotropic so that

Vext,↑(r) = Vext,↓(r) =
1
2
mΩ2r2. (23)

We consider bulk excitations of the harmonically confined
cloud induced by a probe potential U(r, t) of wavevector
q and frequency ω. We characterize the density response
of the gas by the dynamic structure factor calculated in

the local-density approximation:

SLDA(q, ω) =
−2~

1− e−β~ω

∫
d3r Imχ(q, ω;µ(r),∆(r)),

(24)

where χ is the density response function derived in the
previous section for the homogeneous system. This local-
density approximation is valid for q ≥ 1/R, where R is
the radius of the cloud, since it does not take into ac-
count surface modes [10] and in-gap single-particle ex-
citations [26]. The same approach has already described
successfully an experiment on trapped Bose-Einstein con-
densates, where the experiment has directly measured the
function Imχ(q, ω) ∝ [S(q, ω)− S(−q,−ω)] [12].

The position-dependent chemical potential and gap
in equation (24) are defined as µ(r) = µ − Vext(r) and
∆(r) = ∆[n(r)]. The chemical potential µ of each spin
component is determined by the normalization condition
N =

∫
d3r n(r) where N is the total number of particles

in the gas. The equilibrium total density profile n(r) and
the gap ∆(r) are obtained first by numerical solution of
the BCS equations in the homogeneous system

n = 2
∫

d3k

(2π)3

{
|uk|2f(Ek) + |vk|2[1− f(Ek)]

}
, (25)

∫
d3k

(2π)3

{
1− 2f(Ek)

2Ek
−P

(
1

2ξk

)}
= − 1

v↑↓
, (26)

and then by employing the Thomas-Fermi approximation
(TFA) [27] to take into account the inhomogeneity due to
the external confinement.

The main effect of the external confinement is a broad-
ening of the spectrum, which is due to the inhomogeneous
distribution of the density in the trap. This is illustrated
already by a simple analytic expression for the dynamic
structure factor at zero temperature in the low q limit: in-
tegrating the imaginary part of equation (21) over space
yields to lowest order in kF|a↑↓|

Sphonon
LDA (q, ω) = 2

∫
d3r Aq[n(r)]δ(ω − ωq[n(r)])

= 12
√

3Ω−1

(
ω̄

q̄

)3
√

2µ̄− 3
(
ω̄

q̄

)2

. (27)

Here, Aq[n] = mkFcBq/2π~, ωq = cBq and we have
adopted the rescaled units ω̄ = ω/Ω, q̄ = ~q/

√
m~Ω and

µ̄ = µ/~Ω. For the density profile we have taken the TFA
expression n(r) = (2m(µ−Vext(r))/~2)3/2/3π2, which ne-
glects the Hartree mean field effect but turns out to be a
good approximation in the dilute limit [4]. Equation (27)
also supposes that ~cBq < 2∆ at the center of the trap.
This condition is compatible with the validity condition
of the LDA q > 1/R if ∆ > ~Ω.

The numerical results at finite temperature and
wavevector, presented in Figure 2, show in the low temper-
ature spectrum a peak corresponding to the Bogoliubov-
Anderson phonon and include a high-frequency tail due
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Fig. 2. Dynamic structure factor of a confined superfluid Fermi
gas for ~q = 4.15pho at different temperatures: T = 0 (solid
line), kBT = 0.014EF (short-dashed line), kBT = 0.028EF

(long-dashed line) and kBT = 0.042EF (dot-dashed line). The
critical temperature for the BCS transition is kBT = 0.047EF.
The analytic expression for the broadening of the Bogoliubov-
Anderson phonon in the low q and zero temperature limit,
equation (27), is given in dotted line. The inset shows the gap
function in units of EF as a function of the radial coordinate
r/aho, as obtained from the local-density approximation. The
different line-styles correspond to the different temperatures
of the main figure. pho =

√
~mΩ, aho =

p
~/mΩ and EF

is the Fermi energy of a harmonically trapped non-interacting
Fermi gas with the same number of particles, EF = (3N)1/3

~Ω.
The parameters used are N = 8 × 107, Ω = 2π × 27.2 s−1

and a↑↓ = −2160a0 where a0 is the Bohr radius. These pa-
rameters correspond to the weakly-interacting regime with
2kF|a↑↓|/π ' 0.4 and to the collisionless regime ωτ � 1, where
ω = ~cBq, τ

−1 ' π3na2
↑↓vF(T/TF)2, vF is the Fermi velocity

and n is the density at the center of the trap.

to the contribution of multi-particle excitations. With in-
creasing temperature, the asymmetric feature due to the
Bogoliubov-Anderson phonon becomes less marked and
disappears at T ' ∆/kB, when quasi-particle quasi-hole
pairs are easily excited by thermal fluctuations.

4 Conclusion

In this paper, we have derived for a two-component spin-
polarized Fermi gas a generalized Random-Phase Approx-
imation to describe the excitation spectrum in the super-
fluid phase in the collisionless regime. We have shown that,
contrary to the case of bosonic systems, the predictions
of this theory – valid in the limit kF|a↑↓| � 1 – are es-
sentially different from those of the “static” Bogoliubov
theory, which instead yields an unphysically large signal
at small wavevectors, due to the lack of local particle con-
servation.

The possible experiments that have motivated this the-
oretical work are light scattering [12] or scattering of test

particles [21,28] by a two-component Fermi gas stored in
a dipole trap. The outcome of this type of experiments
is described by the dynamic structure factor. We have
therefore employed the results of the homogeneous sys-
tem to predict in a local density approximation the dy-
namic structure factor of a harmonically trapped super-
fluid at finite temperature, and we have shown that the
Bogoliubov-Anderson phonon – main feature of the su-
perfluid phase in the spectrum of the homogeneous gas –
would appear also in the response of the trapped system,
as an asymmetric peak. We have investigated the effects
of the temperature on the shape of the response, show-
ing that the Bogoliubov-Anderson phonon should remain
visible up to a temperature T ' ∆/kB. The normal gas
in the considered collisionless regime does not exhibit any
sharp peak corresponding to sound excitations. The ob-
servation of the Bogoliubov-Anderson phonon peak in the
response of the gas to a probe beam may therefore provide
a way to detect the presence of the superfluid phase in the
experiments on alkali Fermi gases.

Our general RPA equations are also suitable for a full
description of the inhomogeneous system without local
density approximation, thus allowing in principle to take
into account the discrete nature of the eigenmodes of the
trapped gas. This would complete the static Bogoliubov
treatment already performed in [19].
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